Ammonia Removal in Activated Carbons Prepared from Olive Oil Industry Waste

Author:

Ferrer VictorORCID,Flores Mauricio,Grandón Héctor,Escalona Néstor,Segura Cristina

Abstract

Activated carbons (ACs) from olive stone were prepared using CO2, steam, KOH, and H3PO4 as activating agents. The resultant activated carbons were characterized by proximate and ultimate analysis, N2 adsorption (Brunauer-Emmett-Teller (BET) method), iodine number, Boehm titration, temperature-programmed desorption (TPD), and Fourier transform infrared spectroscopy (FTIR). Ammonia (NH3) was used as a test molecule to be adsorbed. The BET surface areas of the ACs obtained ranged from 1000 to 1986 m2 g-1. Type I isotherms were obtained for all the samples, although steam and H3PO4 ACs showed a significant mesopore contribution. KOH activation resulted in carbon with a high microporosity (98%) and high iodine adsorption (1030 mg g-1). KOH AC prepared with a KOH/pyrolyzed char weight ratio of 2 and at 900 °C showed the highest NH3 adsorption (252 mg g-1), favored by the high microporosity and adequate acidity. Chemical activation (KOH and H3PO4) promotes higher NH3 adsorption than the physical ACs prepared (CO2 and steam). Langmuir and Freundlich adsorption equilibrium models were used to correlate the NH3 adsorption isotherms, obtaining the best fit for the Freundlich equation. The results indicated that olive stone-based activated carbon could be used for commercial AC to remove NH3 from gaseous streams.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3