Author:
Nguyen Hong Quan,Nguyen Duc Dang Khoi,Le Tan Duy,Mai An,Huynh Kha Tu
Abstract
This paper proposes an approach for constructing a system for career prediction by applying the eXtreme Gradient Boosting (XGBoost) Decision Tree model to the academic results of Ho Chi Minh International University’s School of Computer Science and Engineering graduates in the past 5 years. Initially, the dataset is cleaned up and normalized to be usable for the prediction algorithm with the help of Python 3 programming language. It is then split into 2 subsets: one for training (80 percent) and the other for testing (20 percent). After that, the algorithm uses the training subset to build the classification model. Finally, the testing subset is loaded into the model to predict each student’s career path based on the respective inputs and hyper-parameters tuning is employed to boost the model’s accuracy. By utilizing this solution, the problem related to predicting students’ future career paths based on their performance throughout their years studying at the university can be adequately addressed and handled.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of Student Job Readiness Using MLP and XGBoost Method;2024 International Conference on Data Science and Its Applications (ICoDSA);2024-07-10
2. A Literature Survey on AI Driven Career Path Prediction;International Journal of Advanced Research in Science, Communication and Technology;2024-02-07