Machine Learning and Big Data for Optimization of Administrative Law (Computing Experience)

Author:

Trofimov Egor Viktorovich,Metsker Oleg Gennad'evich

Abstract

The subject of the research is the methods of its analysis and optimization based on indicators developed in the field of regulatory administrative and legal regulation. A qualitative assessment of the optimization of legislation is shown by the example of the decree of the Governor of St. Petersburg dated 07.09.2015 No. 61-pg, which defines the main directions of public administration of socio-economic phenomena and processes in St. Petersburg. A comparison of the indicators approved by this resolution, which serve the purposes of socio-economic development and administrative and legal regulation, with statistical socio-economic indicators will demonstrate how optimal regulatory regulation is. This optimality is assessed by the compliance of normative indicators (goals) with the most significant ones (for migration flows in inner-city municipalities) statistical indicators identified on large data sets by machine learning methods. Machine learning on large data sets made it possible to identify two of the most significant indicators of them — the goals of socio-economic development and regulatory regulation (the costs of landscaping and the costs of holding local holidays and sporting events), as well as to identify a statistical indicator that is not recognized as a goal of territorial development (environmental protection costs). The results obtained made it possible to identify the most important areas of activity of higher levels of public authority corresponding to the significance of indicators for the migration flow: preschool and school education, healthcare for children and elderly citizens, creation of an accessible (comfortable) environment for them. The results obtained are of methodological importance, since they have the potential to use numerical statistical indicators, and can be useful for evaluating the optimization of regulation and legal (regulatory) policy. Machine learning based on big data in the social, demographic, economic and environmental fields can become an important tool for optimizing administrative legislation and public administration.

Publisher

Aurora Group, s.r.o

Subject

Management of Technology and Innovation

Reference19 articles.

1. Trofimov E. V., Metsker O. G. Ispol'zovanie komp'yuternykh metodov i sistem v izuchenii prava, intellektual'nom analize i modelirovanii pravovoi deyatel'nosti: sistematicheskii obzor // Trudy Instituta sistemnogo programmirovaniya RAN. 2020. T. 32, vyp. 3. S. 147–170. DOI: 10.15514/ISPRAS-2020-32(3)-13.

2. Boldyreva A., Alexandrov M., Koshulko O., Sobolevskiy O. Internet queries as a tool for analysis of regional police work and forecast of crimes in regions // Lecture Notes in Computer Science. 2017. Vol. 10061. Pp. 290–302. DOI: 10.1007/978-3-319-62434-1_25.

3. Issledovanie problem interpretatsii rezul'tatov analiza bol'shikh dannykh v yuridicheskikh issledovaniyakh: otchet o NIR (zaklyuch.) / Vyssh. shk. ekonomiki; ruk. Yu. A. Tikhomirov. M., 2021. 241 s. Ispoln.: A. V. Kashanin, V. D. Churakov, P. M. Osipova, V. D. Sklyar, D. A. Grishina. № gos. registratsii 222021800507-9.

4. Rogotskaya S., Storozhenko A. Sudebnyi aktivizm ne dolzhen vykhodit' za predely printsipa sostyazatel'nosti // Federal'naya palata advokatov Rossiiskoi Federatsii [Sait]. 01.07.2022, 17:27. URL: https://fparf.ru/news/fpa/sudebnyy-aktivizm-ne-dolzhen-vykhodit-za-predely-printsipa-sostyazatelnosti/

5. Casanovas P., Binefa X., Gracia C., Teodoro E., Galera N., Blázquez M., Poblet M., Carrabina J., Monton M., Montero C., Serrano J., López-Cobo J. M. The e-sentencias prototype: a procedural ontology for legal multimedia applications in the spanish civil courts // Law, Ontologies and the Semantic Web: Channelling the Legal Information Flood / J. Breuker, P. Casanovas, M. C. A. Klein, E. Francesconi. Amsterdam: IOS Press, 2009. Pp. 199–219.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3