Forecasting the risk of terrorist attacks based on machine learning algorithms

Author:

Novikov Andrey Vadimovich

Abstract

This article is devoted to the analysis and prediction of the risk of terrorist acts based on a comparison of various machine learning algorithms. In order to determine the most important indicators, more than thirty external and internal risk factors are comprehensively considered by quantifying them and an initial set of initial data is built. The study analyzes multidimensional socio-economic and political data for 136 countries for the period from 1992 to 2020. Four indicators are also predicted, reflecting the expected success of terrorist attacks, the likelihood of socio-economic consequences and general damage from terrorism. In addition to the classical analysis models, the effectiveness of the other four machine learning algorithms that can be used to analyze multidimensional data is compared. To predict the risk of terrorist attacks, a random forest model is created, and the effectiveness and accuracy of the model are evaluated based on statistical criteria. To determine the most important initial indicators, the method of recursive elimination of features in a random forest was used. The main result of this study is to identify the most important indicators for predicting the risk of terrorism and to reduce redundant indicators, which makes it possible to improve understanding of the main characteristics of attacks. Meanwhile, the results show that it is necessary to take appropriate proactive measures not only in the form of forceful detention, intelligence and response operations, but also to improve the stability of the state, achieve social balance and improve the quality of life of citizens.

Publisher

Aurora Group, s.r.o

Reference38 articles.

1. Gruzdev, A. V. Prognoznoe modelirovanie v IBM SPSS Statistics, R i Python: metod derev'ev reshenii i sluchainyi les. – M.: DMK Press, 2018. – 642 s.

2. Maksimov D.A. Ekonomicheskaya bezopasnost' predpriyatiya: otsenka i upravlenie // Slavyanskii forum. – 2016. – № 3 (13). – S. 147-153.

3. Makhutov, N. A. Ispol'zovanie baiesovskikh setei dlya otsenki terroristicheskikh riskov i vybora optimal'noi strategii protivodeistviya terroristicheskoi ugroze / N. A. Makhutov, D. O. Reznikov // Problemy bezopasnosti i chrezvychainykh situatsii. – 2007. – № 5. – S. 43-63.

4. Mashechkin I.V., Petrovskii M.I., Tsarev D.V., Chikunov M.N. Metody mashinnogo obucheniya dlya zadachi obnaruzheniya i monitoringa ekstremistskoi informatsii v seti internet // Programmirovanie. – 2019. № 3. – S. 18-37.

5. Molotnikova, A. A., Zvonkova D. V. Ocherk problem terrorizma i prognozirovanie teraktov s ispol'zovaniem iskusstvennykh neironnykh setei / A. A. Molotnikova, D. V. Zvonkova // Nauka i obrazovanie: khozyaistvo i ekonomika; predprinimatel'stvo; pravo i upravlenie. – 2018. – № 3(94). – S. 121-131.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3