New Holocene formal subdivision – application for the Russian Arctic

Author:

Budantseva Nadine Arkad'evna

Abstract

The subject of the study is a new formal subdivision of Holocene epoch applied to the northern regions of the Russian permafrost. The following criteria are considered: criteria for the modern allocation of three calendar periods of the Holocene; comparison with the Blitt-Sernander scheme; comparison with the three-term division of the Holocene for the Russian Arctic, proposed by Yu.K.Vasilchuk. In 2008, the International Commission on Stratigraphy (IUGS) established the boundary between the Holocene and the Neo-Pleistocene at the turn of about 11,700 calibrated years ago (cal. l. n.). In 2018, in addition to the well-known Blitt-Sernander division, the Holocene was divided by IUGS into three tiers: Greenland (from 11,700 to 8,200 cal. years ago), North Grippian (from 8200 to 4200 cal. years ago) and Meghalayan (beginning 4200 cal. years ago). The features of the development of polygonal vein arrays during three Holocene periods were established and the average January air temperatures for four key regions of the Russian cryolithozone were reconstructed - the north of the European part of Russia, the north of Western Siberia, the lower reaches of the Kolyma River and the east of Chukotka. It is shown that, taking into account the new division of the Holocene, the Greenland and North Grippian periods of the Holocene (between 11.7 and 4.2 thousand years ago) are the stage of the most active development of peat bogs and the simultaneous formation of re–vein ice in them. The Meghalayan Holocene period was characterized by a marked decrease in the development of peatlands, but syngenetic growth of re-vein ice continued within the emerging floodplains and laids, especially within the torn-off areas. The reconstructed average January air temperatures for four key regions of the Russian cryolithozone showed that the Greenland and North Grippian periods of the Holocene were characterized by slightly higher values (on average 1-2 °C higher) than the Meghalayan, with the exception of eastern Chukotka, for which an increase in the average January air temperature during the Meghalayan period was noted.

Publisher

Aurora Group, s.r.o

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference44 articles.

1. Lamb H.H. Climate: present, past and future, Volume 2: Climatic history and the future. London and New York: Methuen. 1977. 835 pp.

2. Walker M., Head M.J., Berkelhammer M., et al. Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period): two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/Subseries // Episodes. 2018;41(4):213-223. https://doi.org/10.18814/epiiugs/2018/018016.

3. Walker M., Head M.J., Lowe J., et al. Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes // J Quat Sci. 2019; 34(3):173-186. https://doi.org/10.1002/jqs.3097.

4. Nilsson T. Standardpollendiagramme und C14-Datierungen aus dem Ageröds mosse im mittleren. Schonen. Lunds univ. årsskr. Adv. 2. 1964, Bd 59, N 7. 52 p.

5. Khotinskii N.A. Golotsen Severnoi Evrazii. Opyt transkontinental'noi korrelyatsii etapov razvitiya rastitel'nosti i klimata/ M., Nauka. 1977. 199 s.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3