Hybrid categorical expert system for use in content aggregation

Author:

Kiryanov Denis Aleksandrovich

Abstract

The subject of this research is the development of the architecture of an expert system for distributed content aggregation system, the main purpose of which is the categorization of aggregated data. The author examines the advantages and disadvantages of expert systems, a toolset for the development of expert systems, classification of expert systems, as well as application of expert systems for categorization of data. Special attention is given to the description of the architecture of the proposed expert system, which consists of a spam filter, a component for determination of the main category for each type of the processed content, and components for the determination of subcategories, one of which is based on the domain rules, and the other uses the methods of machine learning methods and complements the first one. The conclusion is made that an expert system can be effectively applied for the solution of the problems of categorization of data in the content aggregation systems. The author establishes that hybrid solutions, which combine an approach based on the use of knowledge base and rules with the implementation of neural networks allow reducing the cost of the expert system. The novelty of this research lies in the proposed architecture of the system, which is easily extensible and adaptable to workloads by scaling existing modules or adding new ones.

Publisher

Aurora Group, s.r.o

Reference111 articles.

1. Basmanov S.N., Basmanova A. A. Obzor evolyutsii ekspertnykh sistem v meditsine s tochki zreniya sootvetstviya osnovnym priznakam // Perspektivy razvitiya informatsionnykh tekhnologii. 2014. №21. URL: https://cyberleninka.ru/article/n/obzor-evolyutsii-ekspertnyh-sistem-v-meditsine-s-tochki-zreniya-sootvetstviya-osnovnym-priznakam (last accessed: 02.12.2021).

2. Posvalyuk N. E., Pogorelov S. A. Razrabotka ekspertnoi sistemy dlya opredeleniya prediktivnykh riskov zabolevanii // Regional'nye problemy. 2018. №4. URL: https://cyberleninka.ru/article/n/razrabotka-ekspertnoy-sistemy-dlya-opredeleniya-prediktivnyh-riskov-zabolevaniy (last accessed: 02.12.2021).

3. S. N. Islam. Expert System Shell for Developing Multi Crop Expert Systems // AFITA/WCCA 2018 Conference. 2018. URL: https://www.researchgate.net/publication/335383070 (last accessed: 02.12.2021).

4. Makarov O. Yu., Repnikov V.D., Turetskii A.V. Primenenie ekspertnoi sistemy dlya analiza rezul'tatov modelirovaniya radioelektronnykh sredstv na mekhanicheskie vozdeistviya // Vestnik VGTU. 2013. №6–3. URL: https://cyberleninka.ru/article/n/primenenie-ekspertnoy-sistemy-dlya-analiza-rezultatov-modelirovaniya-radioelektronnyh-sredstv-na-mehanicheskie-vozdeystviya (last accessed: 02.12.2021).

5. G. V. Komlev, A. S. Mitrofanova. Expert systems // Tendentsii razvitiya nauki i obrazovaniya. 2019. URL: http://dx.doi.org/10.18411/lj-10-2019-28 (last accessed: 02.12.2021).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scalable Aggregation System Designed to Process 50,000 RSS Feeds;Программные системы и вычислительные методы;2022-04

2. Research of the methods of creating content aggregation systems;Программные системы и вычислительные методы;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3