Integration of information resources of situational centers

Author:

Simankov Vladimir Sergeevich,Drilenko Maxim Vladimirovich

Abstract

The existing approaches towards formation of a single information space for accessing from various information resources are not effective enough from the economic and operational perspective. The subject of this research is the information assets from different sources used for the work of intelligent situational centers. The goal lies in the development of methodology for unification of such resources into a single information space, which is essential for the processing of large volumes of unstructured and poorly structured information. The article explores the models and types of data, information space of the activity for determining the end type of data representation, and the algorithm of transitioning from the object to NoSQL model. As a result of the conducted research, the author built a new information structure of the intelligent situational center. The proposed methodology for the formation of physical data models is compatible with the four types of NoSQL databases: columns, documents, graphs, and a key value. The data models (conceptual, logical, and physical) used in the developed process comply with the meta-models: from conceptual to logical stage, followed by from logical to physical stage. The offered solution should be implemented in the form of a hardware-in-the-loop complex that utilizes the described methodology for integrating the information flows from various situational centers. This would ensure the adaptive dynamic transformation of incoming data and their further use within the situational center.

Publisher

Aurora Group, s.r.o

Reference15 articles.

1. Silverston L. (2001) The Data Model Resource Book, Revised Edition. Volume 1: A Library of Universal Data Models for All Enterprises. — John Wiley & Sons, New York, 2001. — 542 p. — ISBN 978-0-471-38023-8.

2. Hay D. C. (2011) Enterprise Model Patterns: Describing the World (UML Version). — Technics Publications, LLC, Bradley Beach, USA, 2011. — 532 p. — ISBN 978-1-9355040-5-4.

3. Blaha M. (2010) Patterns of Data Modeling (Emerging Directions in Database Systems and Applications). — CRC Press, Washington, 2010. — 261 p. — ISBN 978-1-4398198-9-0.

4. Fowler M. (1996). Analysis Patterns: Reusable Object Models. — Addison-Wesley Professional, 1996. — 384 p. — ISBN 978-0-201-89542-1.

5. Simankov V. S., Drilenko M. V. (2020) Metodicheskie osnovy vybora platform predstavleniya informatsii v intellektual'nom situatsionnom tsentre // Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya: Estestvennye i Tekhnicheskie Nauki. — 2020. — №8. — S. 108–112. — ISSN 2223-2966. — DOI: 10.37882/2223-2966.2020.08.30.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3