On the quality indicators of automated control systems software

Author:

Tikhanychev Oleg Vasilyevich

Abstract

The subject of the research is the process of developing automated control systems software. The object of the research is the quality control system of this process. The regulatory documents establish a list of the main characteristics of program quality assessment, which, as practice has shown, does not fully meet its purpose, providing not quality control, but verification of the compliance of programs with the customer's requirements formulated in the terms of reference. One of the reasons for this lies in the impossibility of evaluating exclusively quantitative indicators of the quality of systems, including both technical means and a person. An attempt to use world practice, for example, relatively successful quality models from the ISO / IEC 25000: 2014 standards have not yet been implemented: the model itself is allowed to be used by regulatory documents (GOST R ISO / IEC 25010-2015), but the quality indicators described in it are not accepted. Private improvements to existing methods do not solve the problem systematically. The article uses general scientific methods of analysis and synthesis. Based on the analysis of existing approaches to assessing the quality of software development, proposals for improving this process are synthesized.The article formulates a scientific and practical problem and offers one of the approaches to its solution, based on the refinement of existing methods for assessing quality based on the model described in GOST R ISO / IEC 25010, taking into account the real needs of users, interpreted through reducing the likelihood of errors of the first and second kind arising from the use of software. The solution of the formulated problem will provide a general increase in the efficiency of automated control through the use of quantitative and qualitative assessments of the software being developed.

Publisher

Aurora Group, s.r.o

Reference27 articles.

1. Tikhanychev O.V. Virtual'naya real'nost' i podderzhka prinyatiya reshenii // Prikladnaya informatika. - 2019. - №4(72). - S.56-64.

2. Vypasnyak V.I. i dr. Sistema podderzhki prinyatiya reshenii kak "virtual'nyi shtab" // Voennaya mysl'. - 2015. - №2. - S.23-29.

3. Vypasnyak V.I. i dr. Modelirovanie vooruzhennogo protivoborstva: perspektivy razvitiya // Voennaya mysl'. - 2009. - №7. - S.12-20.

4. Tikhanychev O.V. Sub''ektivnye aspekty primeneniya matematicheskogo modelirovaniya voennykh deistvii v praktike raboty organov voennogo upravleniya // Voennaya mysl'. - 2011. - №10. - S.49-53.

5. ISO/IEC 25000:2014 Systems and software engineering--Systems and software Quality Requirements and Evaluation (SQuaRE)-Guide to SQuaRE. 34 p.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Graphic Interface Application for the Vision System of the Fruit Sorting Line;Engineering Technologies and Systems;2023-09-29

2. Proposals to Refine the Model for Assessing the Quality of Software Products;Lecture Notes in Networks and Systems;2022-11-16

3. On clarifying the quality control of software products;Программные системы и вычислительные методы;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3