Analysis of service quality indicators in a local positioning system based on ZigBee technology

Author:

Kokoreva Elena Viktorovna,Shurygina Ksenia Igorevna

Abstract

One of the topical areas of the digital economy is the development of services based on the use of systems for local positioning of objects. The article presents the results of analytical modeling of a positioning system built on the equipment of the IEEE 802.15.4 standard. The purpose of this study is to evaluate the efficiency of data transmission in a ZigBee network. As a modeling tool, the mathematical apparatus of queuing networks (CeMO) was selected, which has proven its effectiveness for calculating the characteristics of various infocommunication systems. The method of analysis of average values was chosen by the authors to assess the quality of service indicators due to its computational simplicity and the adequacy of the results obtained. The authors have developed a structural diagram of the investigated positioning system. On the basis of the network architecture, a conceptual, algorithmic and software model in the form of a closed homogeneous queuing network has been developed and its characteristics have been calculated. The parameters obtained as a result of modeling make it possible to evaluate and analyze the quality of service indicators in the telecommunications segment of the local positioning system under study, such as latency, performance, network load factor and the probability of losses, which can be used for efficient traffic management in the telecommunications segment of the geolocation system based on IEEE 802.15.4 standard.

Publisher

Aurora Group, s.r.o

Reference12 articles.

1. Abulude F. O., Akinnusotu A., Adeyemi A. Global positioning system and its wide applications // Continental J. Information Technology. 2015. Vol. 9 (1). P. 22–32.

2. Farah A. GPS/GLONASS Combined Precise Point Positioining For Hydrography — Case Study (Aswan, Egypt) // Twentieth International Water Technology Conference (IWTC20). Hurghada. 2017. P. 653–657.

3. Wi-Fi Location-Based Services 4.1 Design Guide. San Jose, CA. Americas Headquarters Cisco Systems, Inc. 2008. 206 p.

4. Kokoreva E., Kostyukovich A., Doshchinsky I. Analysis of the error in determining the location inside the logistics warehouse complexes // Advances in Intelligent Systems and Computing. Springer Verlag, TransSiberia, 2019.Vol. II.106. pp. 1086–1094.

5. Uradzinski M., Guo H., Liu X., Yu M. Advanced Indoor Positioning Using Zigbee Wireless Technology // Wireless Personal Communications. 2017. № 97. P. 6509–6518.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3