Author:
Chrisnanto Yulison Herry, ,Abdullah Gunawan,
Abstract
Education is an important thing in a person's life, because by having adequate education, one's life will be better. Education can be obtained formally through formal institutions that constructively provide a person's abilities academically. This study aims to determine student performance in terms of academic and non-academic domains at a certain time during their education using techniques in data mining (DM) which are directed towards academic data analysis. Academic performance is delivered through the Educational Data Mining (EDM) integrated data mining model, in which the techniques used include classification (ID3, SVM), clustering (k-Means, k-Medoids), association rules (Apriori) and anomaly detection (DBSCAN). The data set used is academic data in the form of study results over a certain period of time. The results of EDM can be used for analysis related to academic performance which can be used for strategic decision making in aca-demic management at higher education institutions. The results of this study indicate that the use of several techniques in data mining together can maximize the ability to analyze academic performance with the same data source and produce different analysis patterns.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Student Academic Early Warning Prediction based on LSTM networks;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23
2. Extract hidden patterns in students' academic information to improve the curriculum by using data mining;International Review of Applied Sciences and Engineering;2021-07-21