The uses of educational data mining in academic performance analysis at higher education institutions (case study at UNJANI)

Author:

Chrisnanto Yulison Herry, ,Abdullah Gunawan,

Abstract

Education is an important thing in a person's life, because by having adequate education, one's life will be better. Education can be obtained formally through formal institutions that constructively provide a person's abilities academically. This study aims to determine student performance in terms of academic and non-academic domains at a certain time during their education using techniques in data mining (DM) which are directed towards academic data analysis. Academic performance is delivered through the Educational Data Mining (EDM) integrated data mining model, in which the techniques used include classification (ID3, SVM), clustering (k-Means, k-Medoids), association rules (Apriori) and anomaly detection (DBSCAN). The data set used is academic data in the form of study results over a certain period of time. The results of EDM can be used for analysis related to academic performance which can be used for strategic decision making in aca-demic management at higher education institutions. The results of this study indicate that the use of several techniques in data mining together can maximize the ability to analyze academic performance with the same data source and produce different analysis patterns.

Publisher

Politeknik Negeri Bali

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Student Academic Early Warning Prediction based on LSTM networks;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

2. Extract hidden patterns in students' academic information to improve the curriculum by using data mining;International Review of Applied Sciences and Engineering;2021-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3