OPTIMIZATION OF THE WELDING PARAMETERS OF HIGH-QUALITY ALUMINUM/COPPER FSSW JOINTS USING TAGUCHI METHOD COMBINED WITH BACK PROPAGATION NEURAL NETWORK AND GENETIC ALGORITHM

Author:

KASGARI S.A.,MOHAMMAD M.R.,BERTO F.

Abstract

Due to the different superior properties of lightweight and high-strength aluminum and high-conductivity copper metals, the joining of the two is very common and important in today’s industrial applications. Generally, there is no formula to follow for the setting of welding parameters, and the setting is completely based on the past knowledge and experience of experts. Once the range of expert experience is exceeded, the optimal parameters cannot be effectively set, which may easily lead to poor welding quality. This research aims to develop an economical and effective Taguchi experimental design method for achieving the highest shear strength value for aluminum/copper friction stir spot welded joints. Three independent welding process variables were considered including the pin rotation speed, dwell time, and downward pressure. Different optimization techniques such as Taguchi, TOPSIS, artificial neural network, genetic algorithm, and their combinations were utilized for obtaining the best ranges of input welding parameters to achieve the maximum shear strength values. The optimal combination of process parameters was found at the rotation speed of 1800 r/min, the dwell time of 15 s, and the downward pressure of 0.2 mm. The results showed that the integration of the TOPSIS method, neural network, and genetic algorithm provides the best combination of parameter values for the verification of shear strength experiments. According to the performed analyses, the degree of influence of the independent variables on the shear strength of bi-material joints can be ranked as: dwell time > pin rotation speed > downward pressure.

Publisher

Institute of Strength Physics and Materials Science SB RAS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3