Author:
Akay Bahriye Basturk,Karaboga Dervis
Abstract
Optimization problems are generally classified into two main groups:unconstrained and constrained. In the case of constrainedoptimization, special techniques are required to handle withconstraints and produce solutions in the feasible space. Intelligentoptimization techniques that do not make assumptions on the problemcharacteristics are preferred to produce acceptable solutions to theconstrained optimization problems. In this study, the performance ofartificial bee colony algorithm (ABC), one of the intelligentoptimization techniques, is investigated on constrained problems andthe effect of some modifications on the performance of the algorithmis examined. Different variants of the algorithm have been proposedand compared in terms of efficiency and stability. Depending on theresults, when DE operators were integrated into ABC algorithm'sonlooker phase while the employed bee phase is retained as in ABCalgorithm, an improvement in the performance was gained in terms ofthe best solution in addition to preserving the stability of thebasic ABC. The ABC algorithm is a simple optimization algorithm thatcan be used for constrained optimization without requiring a prioriknowledge.
Publisher
International Journal of Optimization and Control: Theories and Applications
Subject
Applied Mathematics,Control and Optimization
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献