Abstract
In this study, we introduce some new mappings in connection with Hermite-Hadamard and Fejer type integral inequalities which have been proved using the GA-convex functions. As a consequence, we obtain certain new inequalities of the Fejer type that provide refinements of the Hermite-Hadamard and Fejer type integral inequalities that have already been obtained.
Publisher
International Journal of Optimization and Control: Theories and Applications
Reference50 articles.
1. Hermite, C. (1893). Sur deux limites d’une int´egrale d´e finie. Mathesis, 3, 82.
2. Hadamard, J. (1893). Etude sur les propri´et´es des´ fonctions enti´eres en particulier d’une function consid´er´e par Riemann. ournal de Math´ematiques Pures et Appliqu´ees, 9, 171–215.
3. Fejer, L. (1906). Uber die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss., 24, 369–390.
4. Ardic, M. A., Akdemir, A. O. & Set, E. (2016). New Ostrowski like inequalities for GG-convex and GA-convex functions. Mathematical Inequalities & Applications, 19(4), 1159–1168. https://doi.org/10.7153/mia-19-85
5. Ardic, M. A., Akdemir, A. O. & Yildiz, K. (2018). On some new inequalities via GG-convexity and GA-convexity. Filomat, 32(16), 5707–5717. https://doi.org/10.2298/FIL1816707A