Improving the efficiency of emergency control systems for future-oriented connection of sources of distributed generation

Author:

Kondrashova Yu.N.1,Gazizova O.V.1,Malafeev A.V.1

Affiliation:

1. Magnitogorsk State Technical University

Abstract

Improvement of energy-intensive technological processes of industrial enterprises requires increasing the reliability and efficiency of power supply of consumers. In this regard, one of the priority areas associated with introduction of the sources of distributed generation is mainstreamed in energy industry. This trend has both beneficial and negative impacts. It makes difficult to control normal, emergency, and post-emergency modes of power supply systems of enterprises of ferrous metallurgy. When new sources of distributed generation are introduced under the conditions of complex closed-loop power supply system, it is necessary to assess the level of short-circuit currents to check the electrical equipment and residual voltages across the busbars of the consumers of ferrous metallurgy. Also, it is necessary to determine the critical time of generators dropping and evaluate the stability in case of isolated operation. An algorithm has been developed for automated search of a dividing point in case of an emergency and isolated operation depending on the power balance to maintain stability. It is based on a combination of the method of successive network reduction and step-by-step method. To improve the reliability of essential consumers, the authors have developed an algorithm for automatic search for the dividing point during operation of emergency control system depending on the power balance to maintain stability. The authors have developed proprietary software to assess the effectiveness of emergency automation equipment of multi-level complex closed-loop power supply system of metallurgical enterprise. Performed calculations and analysis of emergency and post-emergency modes are designed to develop a comprehensive approach of a set of measures to ensure the reliability and stability of essential consumers in the mode of automatic search.

Publisher

Ivanovo State Power University (ISPU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3