Improving the Performance of Low-resourced Speaker Identification with Data Preprocessing

Author:

Phyu Win Lai Lai,Naing Hay Mar Soe,Pa Win Pa

Abstract

Automatic speaker identification is done to tackle daily security problems. Speech data collection is an essential but very challenging task for under-resourced languages like Burmese. The speech quality is crucial to accurately recognize the speaker’s identity. This work attempted to find the optimal speech quality appropriate for Burmese tone to enhance identification compared with other more richy resourced languages on Mel-frequency cepstral coefficients (MFCCs). A Burmese speech dataset was created as part of our work because no appropriate dataset available for use. In order to achieve better performance, we preprocessed the foremost recording quality proper for not only Burmese tone but also for nine other Asian languages to achieve multilingual speaker identification. The performance of the preprocessed data was evaluated by comparing with the original data, using a time delay neural network (TDNN) together with a subsampling technique that can reduce time complexity in model training. The experiments were investigated and analyzed on speech datasets of ten Asian languages to reveal the effectiveness of the data preprocessing. The dataset outperformed the original dataset with improvements in terms of  equal error rate (EER). The evaluation pointed out that the performance of the system with the preprocessed dataset improved that of the original dataset.

Publisher

The Institute for Research and Community Services (LPPM) ITB

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3