Smart Card-based Access Control System using Isolated Many-to-Many Authentication Scheme for Electric Vehicle Charging Stations

Author:

Shalannanda Wervyan,Kornel Fajri Anugerah P.,Hibatullah Naufal Rafi,Fahmi Fahmi,Sutanto Erwin,Yazid Muhammad,Aziz Muhammad,Hamid Muhammad Imran

Abstract

In recent years, the Internet of Things (IoT) trend has been adopted very quickly. The rapid growth of IoT has increased the need for physical access control systems (ACS) for IoT devices, especially for IoT devices containing confidential data or other potential security risks. This research focused on many-to-many ACS, a type of ACS in which many resource-owners and resource-users are involved in the same system. This type of system is advantageous in that the user can conveniently access resources from different resource-owners using the same system. However, such a system may create a situation where parties involved in the system have their data leaked because of the large number of parties involved in the system. Therefore, ‘isolation’ of the parties involved is needed. This research simulated the use of smart cards to access electric vehicle (EV) charging stations that implement an isolated many-to-many authentication scheme. Two ESP8266 MCUs, one RC522 RFID reader, and an LED represented an EV charging station. Each institute used a Raspberry Pi Zero W as the web and database server. This research also used VPN and HTTPS protocols to isolate each institute’s assets. Every component of the system was successfully implemented and tested functionally.

Publisher

The Institute for Research and Community Services (LPPM) ITB

Subject

Electrical and Electronic Engineering,Information Systems and Management,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Harmonics and Quality of Distribution Networks and Transformers on Public Electric Vehicle Charging Station;2023 7th International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3