Sustainable Stabilization of Clay Soil with Rice Husk Ash

Author:

Abdulrahman Shaimaa M.,Al Kindi Ghayda Yaseen,Ihsan Elaf Abd Al–AzaI

Abstract

Groundwater-exposed liquid clay soil (CL) makes foundations unstable. This study used recycled rice husk ash and treated clay soil exposed to groundwater with low-cost, environmentally friendly materials. This paper presents a recent prediction of three equations that link the plastic index to soil strength, cohesion, and the bearing capacity of a foundation. This prediction takes into account the soil’ characteristics before and after treatment, as well as the cumulative load until failure. It creates four models before and after treatment, as well as a different time period after treatment, to study the situation. This is achieved by mixing the best-added ratios in depth equal to the foundation width. The limitations of Atterberg, and the unconfined compressive strength were tested using three additives: cement alone, rice husk ash alone, and rice husk ash plus 2% cement. The percentages were 4%, 6%, 8%, and 10% of the soil weight. It was noted that soil activity dropped from 0.98 to 0.31, 0.32, and 0.42 for cement 8%, rice husk ash 8% plus 2% cement, and 8% RHA alone. The foundation bearing capacity increased from 49 at 1 day to 115, 275, and 460 Kpa for 7, 14, and 28 days, respectively.

Publisher

The Institute for Research and Community Services (LPPM) ITB

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3