A Comparative Study of Pt Depositing Methods (Chemical Reduction vs Photo-Assisted Deposition) onto TiO2 Nanoparticle for Hydrogen Photo-Production

Author:

Ratnawati Ratnawati,Slamet Slamet,Wongso Viona,Gunlazuardi Jarnuzi,Ibadurrohman Muhammad

Abstract

In this paper, we report a comparative study on the methods (chemical reduction and photo-assisted deposition) of incorporating Pt onto TiO2 nanoparticles (TNP) for H2 generation. The phase structure of photocatalysts was scrutinized utilizing TEM and XRD. The degree of dispersion of Pt on the TNP is measured by a pulse chemisorption technique, using TPDRO equipment. Results provided by TEM images, EDX spectra, elemental mapping, and AAS confirmed the successful deposition of Pt on TNP. XRD patterns confirm an anatase and rutile crystallite structure, while UV-vis spectra show the reduction of bandgap from a typical value of 3.2 eV to ca. 2.9 eV. It is found that there is a correlation between the amount of Pt deposited on TNP and Pt dispersion with the H2 generation. The chemical reduction method offered a higher degree of Pt deposition, resulting in a 2.75 times larger amount of deposited Pt as compared to that resulted from photodeposition. This feature is perceived to contribute higher H2 yield (3283 µmol) at 1 w% of Pt loading

Publisher

The Institute for Research and Community Services (LPPM) ITB

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3