Abstract
The MIMO based CO-OFDM FSO communication system is emerging as a promising approach to meet the future bandwidth requirements for seamless communication. The atmosphere being the propagation medium is a major hindrance in wide-scale acceptability of FSO technology. For seamless and error-free transmission and reception of data, a novel concept of MIMO integrated with RS code is proposed in this paper. The system performance of an RS 64 (RS (255,127)) coded MIMO-based CO-OFDM FSO communication link was investigated using BPSK, QPSK and 16-QAM under the combined effects of geometric losses, path losses and atmospheric attenuations at a hitherto un-investigated data rate of 40 Gbps and a link distance of 5 km. The modified gamma-gamma distribution was used for modeling a moderately turbulent channel. With link length varying over a range of 1 to 5 km, error correction was maximum in 16-QAM as compared to BPSK and QPSK, with 150 to 167 corrected errors. In terms of PAPR, PSK was more apt than QAM, but with a compromise in BER. The geometric losses were reduced with link length due to an increase in error correction capability for all three modulation cases, with the least losses occurring in 16-QAM. At the target bit error rate (BER), the signal to noise ratio (SNR) required for BPSK and QPSK was higher by 3.98 dB and 6.14 dB compared to 16-QAM.
Publisher
The Institute for Research and Community Services (LPPM) ITB
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献