Statistical Forecast of Daily Maximum Air Temperature in Arid Areas at Summertime

Author:

Al-Jiboori Monim,Abu Al-Shaeer Mahmoud Jawad,Hassan Ahemd S.

Abstract

Based on historical observations of summers for the period from 2004 to 2018 with a focus on daily maximum and minimum air temperatures and wind speed recorded at 0600 GMT, a non-linear regression hypothesis is developed for forecasting daily maximum air temperature (Tmax) in arid areas such as Baghdad International airport station, which has a hot climate with no cloud cover or rain. Observations with dust storm events were excluded, thus this hypothesis could be used to predict daily Tmax on any day during summers characterized by fair weather. Using mean annual daily temperature range, daily minimum temperature, and the trend of maximum temperature with wind speed, Tmax was forecasted and then compared to those recorded by meteorological instruments. To improve the accuracy of the hypothesis, daily forecast errors, bias, and mean absolute error were analyzed to detect their characteristics through calculating relative frequencies of occurrence. At the end of this analysis, a value of (-0.45ºC) was added to the hypothesis as a bias term.

Publisher

The Institute for Research and Community Services (LPPM) ITB

Subject

Multidisciplinary,General Physics and Astronomy,General Chemistry,General Biochemistry, Genetics and Molecular Biology,General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Mathematics,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3