Optical Spectroscopy and Photoionization Model of Planetary Nebula NGC 6572

Author:

Fajrin Muhammad,Malasan Hakim Luthfi,Akbar Evan Irawan

Abstract

We investigated NGC 6572 through optical spectroscopy to determine its kinematical and chemical properties. Two intermediate dispersion spectra (R~5000) centered around Hα and Hβ were used to derive the nebular expansion velocity from emission lines associated with Hα, Hβ, [OIII], [NII], and [SII] ions. A low dispersion spectrum (R~1000) was used to determine the nebular electron temperature, density, and chemical composition. We performed photoionization modeling to construct a self-consistent nebular model, whileintermediate-resolution spectral images showed the global elliptical structure of the nebula. The expansion velocity deduced from most of the emission lines is consistent with the typical expansion velocity of planetary nebulae, i.e., around 15-20 kms-1. The nebular physical properties align well with those determined by other studies. The nebular abundances were found to be lower than the solar abundances (except for oxygen) but still comparable with the abundances derived by other researchers. The photoionization model generated spectral lines that are consistent with the lines found in the observations. Further spectroscopic observations with higher resolution and wider range at various position angles will be very useful to reveal a more complete and detailed structure of the nebula and to improve the determination of the nebular physical properties.

Publisher

The Institute for Research and Community Services (LPPM) ITB

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3