Magnetoresistance Features at the Magnetic Field-Induced Phase Transition in FeRh Thin Films

Author:

Perov Nikolai,Komlev Aleksei,Makarin Rodion,Maltseva Viktoria,Volegov Alexey,Zverev Vladimir

Abstract

The causes of the appearance of first-order magnetic phase transitions remain a mystery. FeRh alloy is a classical material where a first-order magnetic phase transition occurs. The authors of this article studied the phase transition from the antiferromagnetic state to the ferromagnetic state in FeRh alloy. Comparison of the magnetometry and transport properties results allowed us to determine a number of differences in the mechanisms of the phase evolution during magnetic field and temperature induced transition. This article notes the priority of the rearrangement of the micromagnetic structure of the ferromagnetic phase as a result of the induction of a phase transition by a magnetic field. The main feature of the magnetic field induced phase transition compared to the temperature induced one is the change in the micromagnetic structure of the ferromagnetic phase. The growth of a ferromagnetic phase with less scattering fields leads to asymmetric behavior when a phase transition is induced near the metastable state. We also focused on the importance of taking into account the effect of magnetostriction when analyzing the evolution of the phase transition, which leads to the irreversibility of the phase transition near a zero magnetic field.

Publisher

The Institute for Research and Community Services (LPPM) ITB

Subject

Multidisciplinary,General Physics and Astronomy,General Chemistry,General Biochemistry, Genetics and Molecular Biology,General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Mathematics,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The phases formed in Sn/Co thin bilayer upon heating;Journal of Solid State Chemistry;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3