Abstract
Malaria continues to affect many individuals irrespective of the status or class particularly in Sub-Saharan Africa. In this work, an existing malaria status classical model is studied in fractionalized perspective. The positivity and boundedness of the malaria model is studied. The existence and uniqueness of solutions based on fractional derivative and stochastic perspective is established. The numerical simulation results depict that the infectious classes of humans and vector increase as the fractional order derivative increases. Susceptible classes humans and vector reduce as the fractional order derivative increases. This phenomenon is peculiar with epidemiological models. The implications of the results are that in managing the dynamics of the status model, the fractional order derivative as well as its associated operator is important. It is observed that fractional order derivative based on Mittag-Leffler function provides a better prediction because of its crossover property, its non-local and non-singular property.
Publisher
The Institute for Research and Community Services (LPPM) ITB
Subject
Applied Mathematics,Health Informatics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献