Physical Compatibility of Y-site Pediatric Drug Administration: A Call for Question of US Pharmacopeia Standards?

Author:

Ross Emma L.1,Petty Kirsten1,Salinas Allison1,Bremmer Jarrett2,Her Cheng3,Carpenter John F.3

Affiliation:

1. Department of Pharmacy (ELR, KP, AS), Children's Hospital Colorado, Aurora, CO

2. Department of Pharmacy (JB), University of Colorado Skaggs School of Pharmacy and Pharmaceutical Science, Aurora, CO

3. Department of Basic Science (CH, JFC), University of Colorado Skaggs School of Pharmacy and Pharmaceutical Science, Aurora, CO

Abstract

OBJECTIVE To evaluate the physical intravenous Y-site compatibility of 29 combinations of medications at commonly used pediatric concentrations using both existing and novel techniques. METHODS Medication combinations included were selected by a varied group of pediatric inpatient pharmacists, and then assessed by 3 independent reviewers for existing literature. For each combination, 2 different medications were mixed together in a 1:1 ratio and incubated at room temperature for 4 hours to simulate Y-site administration. Each sample was then analyzed using the US Pharmacopeia (USP) <788> recommended analytical technique of light obscuration (LO) in addition to novel flow imaging (FI) microscopy and backgrounded membrane imaging (BMI). Physical compatibility was determined using USP chapter <788> large volume particle count limits for all techniques. RESULTS A total of 29 different medication combinations were studied. Five combinations met criteria for compatibility by all 3 techniques. The remaining 24 combinations reached the threshold to be considered incompatible by at least 1 of the 3 techniques. Light obscuration, BMI, and FI identified 14%, 59%, and 76% of combinations as incompatible, respectively. All samples deemed incompatible by LO were also incompatible by at least 1 of the other 2 techniques. Flow imaging and BMI results agreed in 69% of samples tested. CONCLUSIONS Most combinations tested were found to be incompatible by at least 1 of the 3 instruments used. Light obscuration appears to have reduced accuracy for identifying particulate resulting in physical medication incompatibility when compared with the novel techniques of FI and BMI.

Publisher

Pediatric Pharmacy Advocacy Group

Subject

Pharmacology (medical),Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3