Diabetes Prediction Using Flask and Decision Tree Classifier with Cross-Validation

Author:

Nor Anisa ,Anggara Kurniawan

Abstract

Diabetes is a chronic medical condition that impairs the body's ability to process blood sugar, leading to elevated levels of glucose in the blood. This condition can cause serious health complications if not managed properly. Early detection and intervention are crucial in preventing these complications. This study aims to develop a user-friendly web application using Flask, a lightweight Python web framework, to predict the type of diabetes based on symptoms reported by users. The Machine Learning model utilized for this purpose is the Decision Tree Classifier, chosen for its simplicity and interpretability. The model's performance was evaluated through cross-validation to ensure reliability and accuracy. The results demonstrate that the developed application can effectively predict the type of diabetes, providing valuable insights and assisting users in seeking timely medical advice. This tool has the potential to enhance public awareness about diabetes and facilitate early diagnosis, ultimately contributing to better health outcomes for individuals at risk of this condition.

Publisher

LPPM Universitas Sari Mulia

Reference10 articles.

1. World Health Organization, “Diabetes.” https://www.who.int/health-topics/diabetes#tab=tab_1

2. International Diabetes Federation, “IDF Diabetes Atlas, 9th Edition 2019.” https://diabetesatlas.org/

3. K. J. Rani, “Diabetes Prediction Using Machine Learning,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., pp. 294–305, Jul. 2020, doi: 10.32628/CSEIT206463.

4. Sudha, H. Sehrawat, Y. Singh, and V. Jaglan, “Machine Learning Approaches For Disease Prediction:- A Review,” in 2022 IEEE World Conference on Applied Intelligence and Computing (AIC), IEEE, Jun. 2022, pp. 682–688. doi: 10.1109/AIC55036.2022.9848838.

5. Fadhli Rizal Makarim, “Jarang Disadari, Ini Ciri-Ciri Diabetes Terjadi di Usia Muda,” 2024. https://www.halodoc.com/artikel/jarang-disadari-ini-ciri-ciri-diabetes-terjadi-di-usia-muda

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3