1. 1) Y. Akiyama, Y. Kasai, M. Iwata, E. Takahashi, F. Sato and M. Murakawa, “The development of anomaly detection system for photovoltaic modules utilizing cloud computing”, Proc. of Multimedia, Distributed, Cooperative, and Mobile Symposium (DICOMO 2013), pp.945-952 (2013).
2. 2) P. Chun, Y. Shimamoto, K. Okubo, T. Miwa and M. Oga, “An Automatic Method of detection cracks in concrete in using deep learning and random forest”, Journal of Japan Society of Civil Engineers(F3), Vol. 73, No.2, pp.I_297-I_307 (2017).
3. 3) T. Yamane and P. Chum, “Crack detection from an image of concrete surface based on semantic segmentation by deep learning”, Journal of Structural engineering, A, Vol. 65A, pp.130-138 (2019).
4. 4) Y. Wang, R. Kawakami, T. Harano, M. Ito, K. Komagome, M. Iida and T. Naemura, “Comparison of supervised and unsupervised method for anomaly detection in wind turbine blade images”, Proc. of the 43th Wind Energy Symposium, pp.183-186 (2019).
5. 5) K. Shigemura and Y. Nomura, "A two-step screening system for surface crack using object detection and recognition technique based on deep learning", Journal of the Society of Materials Science, Vol.69, No.3, pp.218-225, (2020).