Effect of Photoactivation Systems and Resin Composites on the Microleakage of Esthetic Restorations

Author:

Ambrosano Gláucia Maria Bovi,Cavalcante Larissa Maria Assad,Peris Alessandra Resende,Ritter André Vicente,Pimenta Luiz André Freire

Abstract

Abstract Aim The aim of this study was to evaluate the influence of four photoactivation systems [quartz tungsten halogen (QTH), light-emitting diode (LED), argon ion laser (AL), and plasma arc curing PAC)] on cementum/ dentin and enamel microleakage of Class II restorations using a microhybrid [Z250 – 3M ESPE] and two packable composites [(SureFil - Dentsply and Tetric Ceram HB – Ivoclair/Vivadent]. Methods and Materials Three hundred sixty “vertical-slot Class II cavities” were prepared at the mesial surface of bovine incisors using a 245 carbide bur in a highspeed handpiece. Specimens were divided into twelve groups (composite-photoactivation systems). Half of the specimens had the gingival margin placed in enamel (n=15) and the other half in cementum/dentin (n=15). Composites were inserted and cured in 2 mm increments according to manufacturers’ recommended exposure times. After polishing, the samples were immersed in 2% methylene blue solution, sectioned, and evaluated at the gingival margins. Data were submitted to statistical analysis using the Kruskal–Wallis and Mann-Whitney tests. Results No significant differences were found among the photoactivation systems and among resin composites (p>0.05). Microleakage was not significantly affected by location (enamel vs. cementum/dentin, p>0.05). These findings suggested neither the photoactivation systems nor the resin composite types might have an effect on the microleakage at gingival margins Class II cavities. Citation Cavalcante LMA, Peris AR, Ambrosano GMB, Ritter AV, Pimenta LAF. Effect of Photoactivation Systems and Resin Composites on the Microleakage of Esthetic Restorations. J Contemp Dent Pract 2007 February;(8)2:070-079.

Publisher

Jaypee Brothers Medical Publishing

Subject

General Dentistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3