Prediciendo el crimen en ciudades intermedias: un modelo de “machine learning” en Bucaramanga, Colombia

Author:

Gelvez Ferreira Juan David,Nieto-Rodríguez María-Paula,Rocha-Ruiz Carlos-Andrés

Abstract

El uso de tecnología para prevenir el crimen es una práctica cada vez más frecuente. Sin embargo, la evidencia se ha concentrado en ciudades principales, que cuentan con gran cantidad de datos y mejores capacidades locales. El objetivo de esta investigación es presentar los resultados de un modelo de “machine learning” para predecir el delito en Bucaramanga, una ciudad intermedia de Colombia. Se utilizó el procesamiento de señales para grafos y una adaptación al caso del modelo de vectorización de texto TF-IDF. Se identificó que los mejores resultados en la predicción del crimen se dieron con modelos espaciales de grafos por semanas. Además, encontramos evidencia de que existen diversas dificultades de predicción, en dependencia de la periodicidad del modelo. La mejor opción posible (con los datos disponibles) es una periodicidad semanal. El mejor modelo encontrado es un KNN de clasificación, que alcanza un 59 % de exhaustividad(recall) y más de 60 % de exactitud (accuracy.). Concluimosque los modelos de predicción del delito constituyen una herramienta útil para construir estrategias de prevención en ciudades principales; sin embargo, existen limitaciones para su aplicación en ciudades intermedias, que cuentan con poca información. Abstract The use of technology to prevent and respond to citizen security challenges is increasingly frequent. However, empirical evidence has been concentrated in major cities with large amounts of data and local authorities' strong capacities. Therefore, this investigation aims to capture a series of policy recommendations based on a machine learning crime prediction model in an intermediate city in Colombia, Bucaramanga (department of Santander). The model used signal processing for graphs and an adaptation of the TF-IDF text vectorization model to the space-time case, for each of the cities’ neighborhoods. The results show that the best crime prediction outcomes were obtained when using the models with spatial relationships of graphs by weeks. Evidence of the difficulty in predictions based on the periodicity of the model is found. The best possible prediction (with available data) is weekly prediction. In addition, the best model found was a KNN classification model, reaching 59 % of recall and more than 60 % of accuracy. We concluded that crime prediction models are a helpful tool for constructing prevention strategies in major cities; however, there are limitations to its application in intermediate cities and rural areas in Colombia, which have little statistical information and few technical capabilities.

Publisher

Facultad Latinoamericana de Ciencias Sociales, Ecuador (FLACSO)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3