1. J. Zhu, H. Chen, and W. Ye, “A hybrid CNN-LSTM network for
the classification of human activities based on micro-Doppler radar,”
IEEE Access, vol. 8, pp. 24713-24720, Feb. 2020. 10.1109/ACCESS.2020.2971064
2. M. Whang, Y. D. Zhang, and G. Cui “Human motion recognition
exploiting radar with stacked recurrent neural nework,” Digital
Signal Processing, vol. 87, pp. 125-131, Apr. 2019. 10.1016/j.dsp.2019.01.013
3. T. Sakamoto, X. Gao, E. Yavari, A. Rahman, O. Boric-Lubecke, and V.
M. Lubecke, “Hand gesture recognition using a radar echo I-Q ploy and a
convolutional neural network,” IEEE Sensors Letters,
vol. 2, no. 3, p. 7000904, Sep. 2018. 10.1109/LSENS.2018.2866371
4. M. B. Özcan, S. Z. Gürbüz, A. R. Persico, C.
Clemente, and J. Soraghan, “Performance analysis of co-located and
distributed MIMO radar for micro-Doppler classification,” in 2016
European Radar Conference(EuRAD), London, Oct. 2016, pp.
85-88.
5. B. Liu, R. Chen, “Software-defined radar and waveforms for
studying micro-Doppler signatures,” Radar Sensor Technology
XVIII, vol. 9077, p. 907718.