Abstract
В настоящей работе была исследована классическая математическая модель С.В. Дубовского для описания длинных волн Н.Д. Кондратьева (К-волн). Эта модель описывает динамику свободных колебаний эффективности новых технологий и эффективности фондоотдачи. С точки зрения математики она представляет собой систему нелинейных обыкновенных дифференциальных уравнений первого порядка. Целью исследований является визуализация результатов решения с помощью численного моделирования модификации математической модели С.В. Дубовского, которая заключается в учете зависимости нормы накопления от фондоотдачи и внешнего притока инвестиций и новых технологических моделей. Также было показано с помощью критерия Бендиксона, что классическая модель С.В. Дубовского может генерировать замкнутые фазовые траектории, что указывает на ее применение для описание экономических кризисов и циклов. Аналогично было показано, что в рамках модифицированной математической модели С.В. Дубовского также могут существовать замкнутые фазовые траектории. Показано с помощью компьютерного моделирования, что зависимость нормы накопления от фондоотдачи может влиять на период циклических колебаний, что важно при моделировании реальных экономических циклов и кризисов. Учет внешнего притока инвестиций и новых технологий (управленческих решений) с помощью гармонических функций значительно усложняет вид фазовых траекторий, однако и здесь возможны замкнутые фазовые траектории. Эти гармонические функции определяют вынужденные колебания эффективности новых технологий и эффективности фондоотдачи и здесь возможно возникновение эффектов резонанса, которые были показаны с помощью компьютерного моделирования в настоящей статье. Компьютерное моделирование проводилось в среде компьютерной алгебры Matlab.
In this work, the classical mathematical model of S.V. was investigated. Dubovsky to describe long waves N.D. Kondratiev (K-waves). This model describes the dynamics of free fluctuations in the efficiency of new technologies and the efficiency of capital productivity. From the point of view of mathematics, it is a system of nonlinear ordinary differential equations of the first order. The purpose of the research is to visualize the results of the solution using numerical modeling of a modification of the mathematical model of S.V. Dubovsky, which consists in taking into account the dependence of the accumulation rate on capital productivity and external inflow of investments and new technological models. It was also shown using the Bendixson test that the classical model of S.V. Dubovsky can generate closed phase trajectories, which indicates its use in describing economic crises and cycles. Similarly, it was shown that within the framework of the modified mathematical model S.V. Dubovsky can also have closed phase trajectories. It is shown using computer modeling that the dependence of the accumulation rate on capital productivity can influence the period of cyclical fluctuations, which is important when modeling real economic cycles and crises. Taking into account the external influx of investment and new technologies (managerial decisions) using harmonic functions significantly complicates the appearance of phase trajectories, however, closed phase trajectories are also possible here. These harmonic functions determine forced fluctuations in the efficiency of new technologies and the efficiency of capital productivity, and here resonance effects may occur, which were shown using computer modeling in this article. Computer simulation was carried out in the computer algebra environment Matlab.
Publisher
Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences
Reference58 articles.
1. Clarke H. Physical economy: a preliminary inquiry into the physical laws governing the periods of famines and panics: Verlag nicht ermittelbar, 1847.
2. Jevons W.S. The solar-commercial cycle, Nature, 1882. vol. 26, no. 662, pp. 226-228.
3. Кондратьев Н. Д. Большие циклы конъюнктуры. Избранные работы. М.: Издательство Юрайт, 2021. 490 с.
4. Alexander M. A. The Kondratiev cycle: A generational interpretation. Bloomington: IUniverse, 2002. 314 pp.
5. Макаров Д.В., Паровик Р.И. Теория длинных волн Кондратьева: научные школы, методологические подходы, математические модели. М.: Издательский дом Академии Естествознания, 2023. 116 с.