On One Way to Solve Linear Equations Over a Euclidean Ring

Author:

Пачев У.М.ORCID,Кодзоков А.Х.ORCID,Езаова А.Г.ORCID,Токбаева А.А.ORCID,Гучаева З.Х.ORCID

Abstract

Линейным уравнениям, т.е. уравнениям первой степени, а также системам из таких уравнений уделяется большое внимание как в алгебре, так в теории чисел. Наибольший интерес представляет случай таких уравнений с целыми коэффициентами и при этом их нужно решать в целых числах. Такие уравнения с указанными условиями называют линейными диофантовыми уравнениями. Еще Эйлер рассматривал способы решения линейных диофантовых уравнений с двумя неизвестными, причем один из этих способов был основан на применении алгоритма Евклида. Другой способ решения таких уравнений, основанный на цепных дробях, применялся также Лагранжем. Более удобным и перспективным оказался способ Эйлера, чем способ цепных дробей. В настоящей работе рассматривается один новый способ решения линейных уравнений над евклидовым кольцом, основанный на сравнениях по подходящим модулям. Известный ранее матричный метод решения таких уравнений с увеличением числа неизвестных является довольно громоздким в виду того, что он связан с нахождением обратных к унимодулярным целочисленным матрицам. Существенным в нашем способе решения линейных уравнений над евклидовым кольцом является использование алгоритма Евклида и линейного представления НОД элементов в евклидовом кольце. Доказанная в работе теорема применяется к нахождению решения линейного уравнения с тремя неизвестными над кольцом целых гауссовых чисел, являющимся, как известно, евклидовым кольцом. В заключении приводятся замечания о возможных путях дальнейшего развития изложенного исследования. Linear equations, i.e. Equations of the first degree, as well as systems of such equations, receive much attention both in algebra and in number theory. Of greatest interest is the case of such equations with integer coefficients, and in this case they need to be solved in integers. Such equations with the specified conditions are called linear Diophantine equations. Euler also considered ways to solve linear Diophantine equations with two unknowns, and one of these methods was based on the use of the Euclid algorithm. Another method for solving such equations, based on continued fractions, was also used by Lagrange. Euler’s method turned out to be more convenient and promising than the method of continued fractions. In this paper, we consider one new method for solving linear equations over a Euclidean ring, based on comparisons over suitable moduli. The previously known matrix method for solving such equations with an increasing number of unknowns is quite cumbersome due to the fact that it is associated with finding the inverses of unimodular integer matrices. Essential in our method of solving linear equations over a Euclidean ring is the use of the Euclidean algorithm and the linear GCD representation of elements in the Euclidean ring. The theorem proved in the work is applied to finding a solution to a linear equation in three unknowns over a ring of Gaussian integers, which, as is known, is a Euclidean ring. In conclusion, comments are made on possible ways of further development of the presented research.

Publisher

Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences

Reference16 articles.

1. Башмакова И. Г. Диофант и диофантовы уравнения. М.: Наука, 1972. 68 с.

2. Эдвардс Г. Последняя теорема Ферма. Генетическое введение в алгебраическую теорию чисел. М.: Мир, 1980. 425 с.

3. Серпинский В. О решении уравнений в целых числах. М.: Наука, 1961.

4. Фрид Э., Пастор И., Рейман И., Ревес П., Ружа И. Малая математическая энциклопедия. Будапешт: Академия наук Венгрии, 1976. 693 с.

5. Самсонадзе Э.Т. Формулы для числа решений линейного диофйантового уравнения и неравенства, Труды Тбилисского ун-та, 1983. Т. 239, №2, С. 34-42.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diophantine Equation Generated by the Subfield of a Circular Field;Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki;2024-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3