Mathematical Model of Van der Pol-Airy Fractional Oscillator

Author:

Салимова А.И.ORCID,Паровик Р.И.ORCID

Abstract

В работе предложена математическая модель нелинейного осциллятора Ван дер Поля-Эйри с учетом наследственности. Нелинейность осциллятора обусловлена наличием зависимости коэффициента трения от квадрата функции смещения, что характерно для осциллятора Ван дер Поля. Также собственная частота колебаний представляет собой функцию от времени, которая линейно возрастает при его возрастании. Последнее характерно для осциллятора Эйри. Эффекты наследственности вводятся в модельное уравнение посредством дробных производных в смысле Герасимова-Капуто. Они указывают на то, что колебательная система может обладать эффектами памяти, которые проявляются в зависимости текущего ее состояния от предыдущих. Для предложенной математической модели был разработан численный алгоритм, основанный на явной конечно-разностной схемы первого порядка. Численный алгоритм был реализован в компьютерной программе на языке Maple, с помощью которой была произведена визуализация результатов моделирования. Были построены осциллограммы и фазовые траектории при различных значениях параметров модели. Показано, что дробная математическая модель может обладать различными колебательными режимами: от автоколебательных, затухающих и хаотических. Дается интерпретация результатов моделирования. The paper proposes a mathematical model of the nonlinear Van der Pol-Airy oscillator taking into account heredity. The nonlinearity of the oscillator is due to the dependence of the friction coefficient on the square of the displacement function, which is typical for the Van der Pol oscillator. Also, the natural frequency of oscillations is a function of time, which increases linearly as it increases. The latter is typical for the Airy oscillator. Heredity effects are introduced into the model equation through fractional derivatives in the Gerasimov-Caputo sense. They indicate that the oscillatory system may have memory effects that manifest themselves depending on its current state from previous ones. For the proposed mathematical model, a numerical algorithm was developed based on an explicit first-order finite-difference scheme. The numerical algorithm was implemented in a computer program in the Maple language, with the help of which the simulation results were visualized. Oscillograms and phase trajectories were constructed for various values of the model parameters. It is shown that a fractional mathematical model can have various oscillatory modes: from self-oscillatory, damped and chaotic. An interpretation of the simulation results is given

Publisher

Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3