Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous Dirichlet boundary conditions

Author:

Куликов А.Н.ORCID,Куликов Д.А.ORCID

Abstract

Рассматриваются два варианта обобщенного нелокального уравнения Гинзбурга-Ландау. Оба эти варианта изучаются вместе с однородными краевыми условиями Дирихле. Для соответствующих начально-краевых задач показано существование решений при всех положительных значениях эволюционной переменной. Для решений начально-краевых задач получены явные формулы в виде рядов Фурье. Изучены свойстварешений соответствующих начально-краевых задач. Во второй части работы рассмотрен вопрос о существовании глобальных аттракторов для решений изучаемых краевых задач. Изучен вопрос о свойствах глобальных аттракторов. В частности, дан ответ о евклидовой размерности таких аттракторов.Приведены достаточные условия, при которых глобальный аттрактор будет конечномерным. Выделен вариант нелокального уравнения Гинзбурга-Ландау, когда глобальный аттрактор будет бесконечномерным. Two versions of the generalized nonlocal Ginzburg-Landau equation are considered. Both of these options are studied together with the homogeneous Dirichlet boundary conditions. For the corresponding initial-boundary value problems, the existence of solutions is shown for all positive values of the evolution variable. For solutions to initial-boundary value problems, explicit formulas are obtained in the form of Fourier series. The properties of solutions of the corresponding initial-boundary value problems are studied. In the second part of the work, the question of the existence of global attractors for solutions to the studied boundary value problems is considered. The question of the properties of global attractors is studied. In particular, an answer is given about the Euclidean dimension of such attractors. Sufficient conditions are given under which the global attractor will be finite-dimensional. A variant of the nonlocal Ginzburg-Landau equation is distinguished, when the global attractor is infinite-dimensional.

Publisher

Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3