Замечание о спектральной теореме для неограниченных несамосопряженных операторов

Author:

Kukushkin M.V.ORCID

Abstract

In this paper, we deal with non-selfadjoint operators with the compact resolvent. Having been inspired by the Lidskii idea involving a notion of convergence of a series on the root vectors of the operator in a weaker – Abel-Lidskii sense, we proceed constructing theory in the direction. The main concept of the paper is a generalization of the spectral theorem for a non-selfadjoint operator. In this way, we come to the definition of the operator function of an unbounded non-selfadjoint operator. As an application, we notice some approaches allowing us to principally broaden conditions imposed on the right-hand side of the evolution equation in the abstract Hilbert space. В данной работе, дав определение сходимости ряда по корневым векторам в смысле Абеля-Лидского, мы представляем актуальное приложение в теории эволюционных уравнений. Основной целью является подход, позволяющий нам принципиально расширить условия, налагаемые на правую часть эволюционного уравнения в абстрактном гильбертовом пространстве. Таким образом, мы приходим копределению функции неограниченного не самосопряженно- го оператора. Между тем, мы вовлекаем дополнительную концепцию, которая является обобщением спектральной теоремы для не самосопряженного оператора.

Publisher

Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences

Reference24 articles.

1. Agranovich M. S.On series with respect to root vectors of operators associated with forms having symmetric principal part,Functional Analysis and its applications, 1994. vol. 28, pp. 151-167.

2. Gohberg I. C., Krein M. G. [Introduction to the theory of linear non-selfadjoint operators in a Hilbert space]. Nauka: Moscow, 1965 (In Russian).

3. Kato T. Perturbation theory for linear operators.. Berlin, Heidelberg, New York: Springer-Verlag, 1980.

4. Katsnelson V. E. Conditions under which systems of eigenvectors of some classes of operators form a basis, Funct. Anal. Appl., 1967. vol. 1, no. 2, pp. 122-132.

5. Kipriyanov I. A.On spaces of fractionally differentiable functions, Izv. Akad. Nauk SSSR Ser. Mat., 1960. vol. 24, no. 6, pp. 865-882 (In Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3