The Cauchay Problem for a Loaded Partial Differential Equation of the First Order

Author:

Аттаев А.Х.ORCID

Abstract

Как хорошо известно, наличие характеристик является очень существенным при исследовании задачи Коши для дифференциальных уравнений с частными производными независимо от его порядка. В случае, если дифференциальное уравнение с частными производными является нагруженным, то для однозначной разрешимости задачи Коши возникают дополнительные условия разрешимости, зависящие от вида следа нагрузки. Эти условия возникают даже для простейших линейных нагруженных дифференциальных уравнений с частными производными, начиная с первого порядка и выше. Основная цель данной работы – проиллюстрировать возникающие эффекты на примере исследования задачи Коши для линейного нагруженного уравнения в частных производных первого порядка. Так как корректность поставленной задачи Коши эквивалентным образом редуцируется к интегральному уравнению второго рода, то основной метод, применяемый для доказательства его разрешимости – метод последовательных подстановок. Основной вывод заключается в том, что разрешимость задачи Коши для нагруженного уравнения в частных производных существенным образом зависит от выбора следа нагрузки. В случае, когда разрешимость задачи Коши доказана, оказывается, что область влияния данных Коши не ограничивается только характеристиками, а появляются новые не характеристические линии, за которые данные Коши однозначно продолжаться не могут. As is well known, the presence of characteristics is very significant in the study of the Cauchy problem for partial differential equations regardless of its order. In the case where the partial differential equation is loaded, additional conditions dependent on the type of load arise for the unique solvability of the Cauchy problem. These conditions arise even for the simplest first and higher order partial differential equations. The main purpose of this paper is to illustrate the effects arising from the study of the Cauchy problem for the linear loaded first-order partial differential equation. Since the correctness of the Cauchy problem is equivalently reduced to the integral equation of the second kind, the basic method is used to prove its solvability – method of successive substitutions. The main conclusion is that the solvability of the Cauchy problem for a loaded partial derivative equation essentially depends on the choice of the load. In the case when the solvability of the Cauchy problem is proven, it turns out that the area of influence of the Cauchy data is not limited to the characteristics only, but new non-characteristic lines appear, beyond which the Cauchy data cannot clearly be extended.

Publisher

Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences

Reference50 articles.

1. Feller W. The parabolic differential equations and the associated semi-groups of

2. transformations,Ann. Math., 1952. vol. 55, pp. 468–519.

3. Phillips R. S. Dissipative operators and hyperbolic systems of partial differential equations,Trans.

4. Amer. Math. Soc., 1959. vol. 90, no. 2, pp. 193–254.

5. Krall A. M. The development of general differential and general differential boundary systems,Rocky

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3