О некоторых новых оценках интегралов функции площадей и аналитических классов типа Бергмана в некоторых областях в Cn

Author:

Shamoyan R.F.ORCID,Tomashevskaya E.B.

Abstract

The purpose of the note is to obtain equivalent quasinorm, sharp estimates for the quasinorm of Hardy’s and new Bergman’s analytic classes of in the polydisk. We extend some classical onedimensional assertions to the case of several complex variables. Our results more precisely provide direct new extention of some known one variable theorems concerning area integral to the case of simplest product domains namely the unit polydisk in Cn. Let further D be a bounded or unbounded domain in Cn. For example, tubular domain over symmetic cone or bounded pseudoconvex domain with smooth boundary. Our results can be probably extended to the case of products of such type complicated domains, namely even to D×…×D. This can be probably done based on some approaches we suggested and used in this paper. On the other hand our results in simpler case namely in the unit polydisk may also have various interesting applications in complex function theory in the unit polydisk. We finnaly provide similar type sharp. results in some new Bergman spaces in bounded strongly pseudoconvex domainsВ работе приведены новые эквивалентные квазинормы для некоторых новых пространств типа Бергмана в полидиске и в ограниченных псевдовыпуклых областях. Подобные оценки установлены также для классов типа Харди в полидиске. Эти результаты обобщают некоторые известные одномерные неравенства для пространств типа Харди и классов типа Бергмана в единичном круге  на случай полидиска и ограниченной псевдовыпуклой области. Оценки такого типа могут иметь также различные приложения. Пусть D ограниченная или неограниченная область в Cn (ограниченная псевдовыпуклая или неограниченная трубчатая область над симметрическим конусом). Подходы, примененные в данной работе при доказательстве утверждений в полидиске могут быть, по-видимому, также использованы для доказательства подобных приведенных в данной работе оценок, но в полиобластях D×…×D существенно более общего типа, чем единичный полидиск

Publisher

Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences

Reference70 articles.

1. Shamoyan R. F. O prostranstvakh golomorfnykh v polikruge funktsiy tipa Lizorkina-Tribelya (On spaces of holomorphic functions in polydisk Lizorkin-Tribel type ) // Izv. NAN Arm., 2002. no. 3, pp. 57–78

2. Shamoyan R. F. On BMOA-type characteristics for one class of holomorphic functions in a disk // Siberian Math. J. 2003. vol. 44. no. 3. pp. 539–560.

3. Shamoyan R. F. On the quasinorm of holomorphic functions from classes Lizorkin-Tribel in subostov // Symposium ”Fourier Series and their applications” (in Russian), 2002. pp. 54-55.

4. Cohn W. A factorization theorem for the derivative of a function in Hp // Proc. AMS. 1999. vol. 127. no. 2. pp. 507-517.

5. Cohn W. Bergman projections and operators on Hardy spaces // Funct. Anal. J. 1997. vol. 144. pp. 1-19.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3