Comparative Study on the Direct Current Electrical Conduction in Monolayer and Bilayer Plasma Polymerized Thin Films

Author:

Mohammad Mostofa Kamal1ORCID,Abu Hashan Bhuiyan2

Affiliation:

1. Department of Physical Sciences, Independent University, Bangladesh (IUB), Bashundhara R/A, Baridhara, Dhaka - 1229, Bangladesh.

2. Department of Physics, Bangladesh University of Engineering and Technology (BUET), Ramna, Dhaka – 1000, Bangladesh.

Abstract

A comparative study on the nature of direct current electrical conduction in the monolayer and bilayer plasma polymerized thin films has been discussed in this article. The plasma polymerized pyrrole (PPPy) monolayer, plasma polymerized N,N,3,5-tetramethylaniline (PPTMA) monolayer and plasma polymerized pyrrole-N,N,3,5-tetramethylaniline (PPPy-PPTMA) bilayer thin films were deposited at room temperature onto glass substrates by using a parallel plate capacitively coupled glow discharge reactor. The current density-voltage (J-V) characteristics and the conductivity-voltage (σ-V) characteristics have been studied to analyze the direct current conduction mechanism in PPPy, PPTMA monolayer and PPPy-PPTMA bilayer thin films. The observed results have been presented in this paper. The J-V and σ-V characteristics of PPPy and PPTMA monolayer thin films of different thicknesses indicated an increase in electrical conduction and also an increase in conductivity in the films of lower thicknesses. It is also observed that PPTMA thin films are more conductive than that of PPPy thin films. As a result the PPPy-PPTMA bilayer thin films of different thicknesses and different deposition time ratios indicated an increase in conductivity as the proportion of PPTMA is increased in the films. In addition to that, from the J-V and σ-V characteristics of PPPy, PPTMA and PPPy-PPTMA thin films of same thickness, it is observed that the current conduction and the conductivity in the bilayer thin films is less compared to the monolayer thin films. This unusual result has been explained by studying ideal and real bilayer thin films. It is also seen that in the low voltage region, the current conduction obeys Ohm’s law while the charge transport phenomenon appears to be the space charge limited conduction (SCLC) in the higher voltage regions.

Publisher

JACS Directory

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3