Air Quality Assessment over Sudan using NASA Remote Sensing Satellites Data and MERRA-2 Model

Author:

Muntasir Ibrahim1,Gabriele Curci2,Farouk Habbani1

Affiliation:

1. Depart of Physics, Faculty of Science, University of Khartoum, Khartoum, Sudan.

2. CETEMPS, Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy.

Abstract

Satellite remote detecting instruments have been to a great extent used to evaluate air pollutants on the ground and their impacts on human wellbeing. These instruments play an essential job by assessing emanations and air quality models yield. The study concentrated on the analysis of monthly data for the period January 2003 -December 2016 using remote sensing technology and via satellite data products for NASA's Earth navigation satellite. The tools used are Medium Resolution Imaging Spectrophotometer (MODIS), Multi-angle Imaging Spectrophotometer (MISR), the Ozone Monitoring Instrument (OMI), and the Retrospective Analysis of Modern Times for Research and Applications, Version 2 (MERRA-2). Sudan is influenced by airborne particles because of its diverse climate systems, which differ from the desert in the north to poor savanna in the center and to rich savanna in the south. The impact of air pollution is obvious during these years in Sudan. Likewise, OMI trace gas vertical column observations of nitrogen dioxide (NO2) watched higher convergences of tropospheric column NO2 in 2016 than in 2005 over Khartoum that recommends NOx emissions have increased in the city over this time period. The most elevated grouping of dust, a particulate matter (PM2.5), observed in March 2012 over Khartoum state. The highest concentration of sulfur dioxide (SO2) saw by MERRA-2 over Kuwait and South Sudan during December 2015. Noteworthy centralization concentration of black carbon observed over Iraq, Egypt, Central Africa, and South Sudan in December 2015. The most contamination from carbon monoxide watched by MERRA-2 over Iraq and north of Uganda during December 2014.

Publisher

JACS Directory

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Association of Air Pollution Levels to Atmospheric Weather Regimes over Europe;Journal of Environmental Science and Pollution Research;2021-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3