Abstract
Variability and diversity of landfill leachate cause difficulties in assessing the actual degree of threat to the environment and selecting an appropriate method of disposal or treatment. Therefore, quantifying leachate contamination potential is essential in landfill management and could be used to assess the accuracy of landfill operation and its impact on surrounding areas. The aim of this paper was to evaluate the performance of the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method and its suitability in determining leachate pollution potential in comparison to the Leachate Pollution Index (LPI) method. For this purpose, the quality of leachate from the landfill, collected four times a year from 2004 to 2021, was analysed. The following parameters were monitored: pH, EC, Pb, Cu, Zn, Cr, and Hg. On the basis of the measured parameters, the LPI and TOPSIS indexes were calculated. The obtained results indicated that the TOPSIS method is more sensitive and accurate in observing changes in leachate quality. It can be applied to any number of contaminant parameters without restrictions on scope, quantity, or their relative importance. It can also be used to compare the variations in leachate quality over time or to analyse differences in leachate quality among various landfill sites.
Publisher
Fundacja Ekonomistow Srodowiska i Zasobow Naturalnych
Reference53 articles.
1. Abunama, T., Moodley, T., Abualqumboz, M., Kumari, S., & Bux, F. (2021). Variability of leachate quality and polluting potentials in light of leachate pollution index (LPI) – A global perspective. Chemosphere, 282, 131119. https://doi.org/10.1016/j.chemosphere.2021.131119.
2. Abunama, T., Othman, F., Ansari, M., & El-Shafie, A. (2019). Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill. Environmental Science and Pollution Research, 26(4), 3368-3381. https://doi.org/10.1007/s11356-018-3749-5
3. Act from 12 July 2019. Act on regulation of the Minister of Marine Economy and Inland Navigation on substances particularly harmful to the aquatic environment and conditions to be met when discharging waste water into waters or into the ground, and when discharging rainwater or snowmelt into waters or into water facilities. Journal of Laws 2019, item 1311, as amended. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311 (in Polish).
4. Adelopo, A. O., Haris, P. I., Alo, B. I., Huddersman, K., & Jenkins, R. O. (2018). Multivariate analysis of the effects of age, particle size and landfill depth on heavy metals pollution content of closed and active landfill precursors. Waste Management, 78, 227-237. https://doi.org/10.1016/j.wasman.2018.05.040
5. Adhikari, B., Parajuli, A., Manandhar, D. R., & Khanal, S. N. (2020). Chemical Assessment of Different Landfill Leachate in Nepal. IOP Conference Series: Earth and Environmental Science, 578. https://doi.org/10.1088/1755-1315/578/1/012022
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献