Experimental and Investigation of ABS Filament Process Variables on Tensile Strength Using an Artificial Neural Network and Regression Model

Author:

Hamed Mostafa Adel Abdullah

Abstract

 Fused deposition modeling (FDM) is a commonly used 3D printing technique that involves heating, extruding, and depositing thermoplastic polymer filaments. The quality of FDM components is greatly influenced by the chosen processing settings. In this study, the Taguchi technique and artificial neural network were employed to predict the ultimate tensile strength of FDM components and establish a mathematical model. The mechanical properties of ABS were analyzed by varying parameters such as layer thickness, printing speed, direction angle, number of parameters, and nozzle temperature at five different levels. FDM 3D printers were used to fabricate samples for testing, following the ASTM-D638 standards, using the Taguchi orthogonal array experimental design method to set the process parameters. The results indicated that the printing process factors had a significant impact on tensile strength, with test values ranging from 31 to 38 MPa. The neural network achieved a maximum error of 5.518% when predicting tensile strength values, while the analytical model exhibited an error of 19.376%.

Publisher

Al-Nahrain Journal for Engineering Sciences

Reference27 articles.

1. A. J. Sheoran and H. Kumar, '' Fused Deposition modeling process variables optimization and effect on mechanical properties and part quality, Review and reflection on present research'', Materials Today Proceedings, 21, pp. 1659-1672. (2020). https://doi.org/10.1016/j.matpr.2019.11.296

2. Prayitno et al, ''Recent Progress of Fused Deposition Modeling (FDM) 3D Printing: Constructions, Variables, and Processings,'' IOP Conf. Ser.: Mater. Sci. Eng.1096 012045(2022).https://doi.org/10.1088/1757.899X/1096/1/012045

3. M.R. Derise and A. Zulkharnain, '' Effect of Infill Pattern and Density on Tensile Properties of 3D Printed Polylactic acid Parts via Fused Deposition Modeling (FDM),'' International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, 20, pp. 50-63. (2020).

4. Lan et al, ''Effect of Process Variables on Mechanical Strength of Fabricated Parts using the Fused Deposition Modelling Method,'' Journal of the Korean Society for Precision Engineering, 36, pp. 705-712. (2019).

5. G. B. Murugan and M. B., Ghosh, ''Taguchi method and ANOVA: An approach for process variables optimization of hard machining while machining hardened steel.'' Journal of Scientific & Industrial Research, 68, pp. 686-695. (2009).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3