PREDICTING PUBLIC PERSONNEL SELECTION EXAMINATION ACHIEVEMENT: A DATA MINING APPROACH

Author:

Bozdağ Kasap Ayşegül1ORCID,Bakan Kalaycıoğlu Dilara1ORCID

Affiliation:

1. GAZI UNIVERSITY, GAZİ FACULTY OF EDUCATION

Abstract

This research investigates the predictive variables related to the Public Personnel Selection Examination (KPSS), utilized for recruitment in public institutions and organizations. The study explores predictor variables' importance levels by analysing longitudinal data, including examinees' high-stakes exams, demographic information, and educational backgrounds. It compares the prediction performances of machine learning algorithms such as artificial neural networks, random forest, support vector machine, and k-nearest neighbour. The findings reveal that the quantitative test of the graduate education exam is the most influential predictor, closely followed by the mathematics test of the university entrance exam. These results highlight the importance of quantitative reasoning skills in predicting KPSS achievement. Additionally, variables related to undergraduate programs and universities demonstrate significant importance in predicting KPSS achievement. Notably, the artificial neural networks model demonstrates superior predictive accuracy compared to other models, indicating its effectiveness in KPSS prediction. This research sheds light on important predictors of KPSS achievement and provides valuable insights into the effectiveness of different prediction models.

Publisher

Tugba Yanpar Yelken

Reference61 articles.

1. Açıl, Ü. (2010). Öğretmen adaylarının akademik başarıları ile KPSS puanları arasındaki ilişkinin çeşitli değişkenler açısından incelenmesi (Publication No. 264743) [Master’s thesis, Mustafa Kemal University]. YOK Thesis Center.

2. Arıkan, S., & D'Costa, A. (2016). ÖSS ve LES ile ölçülen sayısal ve sözel beceriler arasındaki ilişki. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 12(1), 303-313. https://doi.org/10.17860/efd.71302

3. Bahadır, E. (2013). Yapay Sinir Ağları ve Lojistik Regresyon Analizi Yaklaşımları ile Öğretmen Adaylarının Akademik Başarılarının Tahmini, (Publication No. 349939) [Doctoral thesis, Marmara University]. YOK Thesis Center.

4. Bahar, H.H., (2006). KPSS puanlarının akademik başarı ve cinsiyet açısından değerlendirilmesi. Eğitim ve Bilim, 31(140), 68-74. https://egitimvebilim.ted.org.tr/index.php/EB/article/view/5010

5. Bahar, H.H., (2011). ÖSS puanı ve lisans mezuniyet notunun KPSS 10 Puanını Yordama Gücü. Eğitim ve Bilim, 36(162), 168-181. https://egitimvebilim.ted.org.tr/index.php/EB/article/view/801

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3