Abstract
Despite established exposure limits and safety standards as well as the availability of carbon monoxide (CO) alarms, each year 50,000 people in the United States visit emergency departments for CO poisoning. Carbon monoxide poisoning can occur from brief exposures to high levels of CO or from longer exposures to lower levels. Common symptoms can include headaches, nausea and vomiting, dizziness, general malaise, and altered mental status. Some patients may have chest pain, shortness of breath, and myocardial ischemia, and may require mechanical ventilation and treatment of shock. Individuals poisoned by CO often develop brain injury manifested by neurological problems, including cognitive sequelae, anxiety and depression, persistent headaches, dizziness, sleep problems, motor weakness, vestibular and balance problems, gaze abnormalities, peripheral neuropathies, hearing loss, tinnitus, Parkinsonian-like syndrome, and other problems. In addition, some will have cardiac issues or other ailments. While breathing oxygen hastens the removal of carboxyhemoglobin (COHb), hyperbaric oxygen (HBO2) hastens COHb elimination and favorably modulates inflammatory processes instigated by CO poisoning, an effect not observed with breathing normobaric oxygen. Hyperbaric oxygen improves mitochondrial function, inhibits lipid peroxidation transiently, impairs leukocyte adhesion to injured microvasculature, and reduces brain inflammation caused by the CO-induced adduct formation of myelin basic protein. Based upon three supportive randomized clinical trials in humans and considerable evidence from animal studies, HBO2 should be considered for all cases of acute symptomatic CO poisoning. Hyperbaric oxygen is indicated for CO poisoning complicated by cyanide poisoning, often concomitantly with smoke inhalation.
Publisher
Undersea and Hyperbaric Medical Society (UHMS)