Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine

Author:

Ananda Fadhilah Dwi,Pristyanto Yoga

Abstract

Media sosial saat ini merupakan media komunikasi yang sering digunakan oleh kalangan masyarakat Indonesia dalam menyampaikan sebuah opini. Salah satu media yang sering digunakan masyarat adalah twitter. Twitter merupakan media sosial yang memberikan banyak informasi melalui tweet, dari informasi yang ditulis tersebut terdapat data yang dapat diolah. Penelitian ini menggunakan teknik text mining dengan menerapkan algoritma Support Vector Machine dipergunakan untuk klasifikasi sentimen pengguna twitter terhadap layanan internet Biznet. Kernel yang digunakan adalah kernel Linear dan kernel RBF. Pengujian dilakukan dengan 3 skenario, pada skenario 1 menggunakan 800 data, skenario 2 menggunakan 900 data dan skenario 3 menggunakan 1000 data, untuk pembagiannya yaitu 90% data training dan 10% data testing dari masing-masing skenario. Berdasarkan hasil pengujian yang dilakukan menggunakan kernel linear dan kernel RBF dapat diambil kesimpulan sebagai berikut. Algoritma SVM menggunakan dengan kernel linear maupun kernel RBF memiliki hasil kinerja evaluasi baik dari sisi akurasi, presisi dan recall yang relatif sama. Sehingga dapat dikatakan bahwa algoritma SVM baik dengan kernel RBF maupun Linear sama sama dapat digunakan dengan baik dalam menentukan sentimen pengguna internet Biznet. Selain itu dengan 3 skenario pengujian dengan jumlah data yang berbeda algoritma SVM baik dengan kernel RBF maupun Linear sama sama konsisten kinerjanya.  

Publisher

STMIK Bumigora Mataram

Subject

Marketing,Organizational Behavior and Human Resource Management,Strategy and Management,Drug Discovery,Pharmaceutical Science,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tweets Sentiment Analysis of Putin’s Participation at the G20 Summit in Indonesia;Computational Science and Its Applications – ICCSA 2023 Workshops;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3