Implementasi Algoritma Long Short-Term Memory (LSTM) Untuk Mendeteksi Ujaran Kebencian (Hate Speech) Pada Kasus Pilpres 2019

Author:

Talita Aini Suri,Wiguna Aristiawan

Abstract

Researches involving Artificial Neural Network (ANN) or its derivative have been published all around the world, spesifically to solve data mining problem, classification, clusterinf, or detection problems. Recurrent Neural Network is a class of ANN with Long Short Term Memory (LSTM) as its one of the architecture that commonly used in deep learning problems. On this paper, we use LSTM to detect hate speech on social media related with Indonesia President Election on 2019. There are several steps on this research, we start with literature study, data collection, data preprocessing, training step, and testing step.  The dataset consist of 950 sentences, while the testing data consist of 190 comments on Facebook. The best model performance was reached with recall value 0.7021, which menas that from the whole relevant instances on the testing data, 70.21% were categorized as relevant, on this case as hate speech (HS). The other performance parameter value as in accuracy and precision still quite low due to the testing data that comes directly from social media which highly possible consist of inconsistent choises of words, informal words, or contains grammatically error sentences.

Publisher

STMIK Bumigora Mataram

Subject

Marketing,Organizational Behavior and Human Resource Management,Strategy and Management,Drug Discovery,Pharmaceutical Science,Pharmacology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3