Resilient Backpropagation Neural Network on Prediction of Poverty Levels in South Sulawesi

Author:

Poerwanto BobbyORCID,Fajriani Fajriani

Abstract

Poverty is a topic that continues and is always discussed up to this time, as a benchmark indicator of how the level of welfare and prosperity in the lives of people in a country. Several attempts have been made by the central and regional governments to reduce poverty levels, including “Bantuan Langsung Tunai” (BLT) and the “Program Keluarga Harapan” (PKH). However, poverty reduction in Indonesia is still slowing down, including in South Sulawesi. Based on this, this study aims to predict poverty levels in South Sulawesi. Factors thought to influence poverty levels are the Human Development Index (HDI), the Open Unemployment Rate (TPT), and the Gross Regional Domestic Product (GRDP). The data used are data from 2010 to 2014. The method used is a backpropagation neural network with a resilient algorithm or better known as a resilient backpropagation neural network (RBNN). The results of the prediction of poverty levels using predictors of HDI, TPT, and GRDP showed that the analysis of the RBNN reached its optimum using architecture [3- 9 - 1] and reached convergence at the 81th iteration with an accuracy rate of 95.34%.

Publisher

STMIK Bumigora Mataram

Subject

Marketing,Organizational Behavior and Human Resource Management,Strategy and Management,Drug Discovery,Pharmaceutical Science,Pharmacology

Reference17 articles.

1. [1] Badan Pusat Statistik, Profil Kemiskinan di Indonesia Maret 2019. Jakarta: Badan Pusat Statistik, 2019.

2. [2] Badan Pusat Statistik, Profil Kemiskinan di Indonesia September 2018. Jakarta: Badan Pusat Statistik, 2019.

3. [3] Badan Pusat Statistik Provinsi Sulawesi Selatan, Profil Kemiskinan Sulawesi Selatan, September 2018. Makassar: Badan Pusat Statistik Provinsi Sulawesi Selatan, 2019.

4. [4] N. Zuhdiyaty and D. Kaluge, "Analisis Faktor-Faktor yang Mempengaruhi Kemiskinan di Indonesia Selama Lima Tahun Terakhir (Studi Kasus pada 33 Provinsi)," Jurnal Ilmiah Bisnis dan Ekonomi Asia, vol. 11, no. 2, pp. 27-31, 2017.

5. [5] Y. C. Pratama, "Analisis Faktor-Faktor yang Mempengaruhi Kemiskinan di Indonesia," Esensi: Jurnal Bisnis dan Manajemen, vol. 4, no. 2, Sep. 2014.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stroke type classification model based on risk factors using resilient backpropagation neural networks;4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022);2023

2. Assessment of the Contribution of Some Observable Factors to the Dynamics of Poverty in the Russian Federation Using the Apparatus of Neural Networks;2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA);2022-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3