Mathematical Problems of Artificial Intelligence and Artificial Neural Networks
Author:
Бетелин В. Б.,Галкин В. А.
Abstract
Предложен общий топологический подход для анализа искусственных нейронных сетей на основе симплициальных комплексов и свойств аппроксимации непрерывных отображений их симплициальными приближениями. Выявлены существенные для этого класса задач явления вычислительной неустойчивости, связанной с общими проблемами некорректных задач в гильбертовом пространстве и методами их регуляризации, типичными для обработки Big Data. Сформулированы критерии точности и применимости моделей искусственных нейронных сетей, рассмотрены примеры их реализации на основе теории интерполяции функций. Развитие идей П.Л.Чебышёва о наилучшем приближении служит отправной точкой для широкого класса математических исследований по оптимизации обучающих наборов для построения ИНС.
We propose a general topological approach to the analysis of artificial neural networks using simplicial complexes and the approximation of continuous mappings with simplicial ones. The essential properties of numerical instability in such problems were identified. It is associated with ill-posed problems in Hilbert space and regularization methods typically applied to Big Data processing. We formulated the criteria of artificial neural network accuracy and applicability and included some implementation examples based on the interpolation theory. Advancing P.L. Chebyshev’s ideas about the best approximation may be an entry point to various mathematical research on artificial neural network training dataset optimization.
Publisher
Scientific Research Institute of System Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献