AUTOMATED DETECTION AND ASSESSMENT OF WAR-INDUCED DAMAGE TO AGRICULTURAL FIELDS USING SATELLITE IMAGERY

Author:

Kussul N.ORCID,Drozd S.ORCID,Yailymova H.ORCID

Abstract

This paper introduces a methodology based on machine learning and remote sensing for detecting military-induced damages to agricultural lands in Ukraine using free Sentinel-2 satellite data. The most informative spectral bands (B2, B3) and vegetation indices (NDVI, GCI) were experimentally selected for recognizing damaged fields through the Random Forest classification algorithm. Additionally, an anomaly detection method based on the estimation of deviations of pixel values from the mean within each field was applied to determine local damage in the identified affected fields. The proposed methodology demonstrated high classification accuracy with an f1-score of 0.87%, producer’s accuracy of 0.89%, user’s accuracy of 0.85, and sensitivity for detecting local damage. The developed anomaly detection method allows to recognize damage visible on the 10-meter pixel of the Sentinel-2 satellite, but does not identify small craters. Cloudiness of satellite images can significantly impair the accuracy of damage detection, and the method of local damage detection can respond to non-military anomalies and requires careful selection of threshold coefficients for each field. The study conducted a comprehensive assessment of damages inflicted on Ukrainian agricultural fields during the period 2022-2023, revealing that a total of 1,544,952 hectares, equivalent to 5.72% of the total agricultural area, experienced damage. This included 509,107 ha of wheat, 114,302 ha of sunflower, 68,830 ha of maize, 4,029 ha of rapeseed, and 16,561 ha of other crops. The most affected regions were Donetsk, Zaporizhia, and Kherson oblasts. The comprehensive findings of this research provide valuable insights for monitoring the state of agriculture and formulating strategic plans for the recovery of agricultural resources amidst the ongoing military conflict.

Publisher

Odesa National University of Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3