THE STATE OF STANDARDIZATION OF POST-QUANTUM CRYPTO-ALGORITHMS AT THE GLOBAL LEVEL

Author:

Tsentseria Oleksandra,Hleha Kateryna,Matiyko AleksandraORCID,Samoilov IgorORCID

Abstract

Abstract. In the digital age, cryptography is widely used in various important systems such as financial, military and government ones, medical records etc. The life of modern people is closely connected with the cryptography. We send messages via instant messengers without even considering in which way the security of communications and data is ensured. We buy things both online and transfer money with confidence in transaction security. The level of digitization of our society is constantly increasing, and the digital data needs a reliable protection, which makes cryptography a current topic. Cryptographic systems ensure our security and the basic properties of information, such as privacy, integrity, availability. However, with the beginning of the development of quantum computers, the field of cryptography has developed in a new direction. Quantum cryptography is a science that studies the methods of communication systems protection. It is based on the idea that patterns of quantum physics (physical properties described by the laws of quantum optics, quantum electrodynamics, or quantum field theory) are inviolable. The current state of development and usage of powerful quantum computers, as well as their mathematical and software, is strictly confidential and securely protected. Only clear-cut information about quantum computers and their usage in cryptography is provided. NIST has announced an open competition to select quantum-resistant public-key cryptographic algorithms. After the third round, CRYSTALS-KYBER, CRYSTALS Dilithium, FALCON, and SPHINCS+ were proposed to be standardized. NIST has already recommended moving from the sizes of keys and algorithms that provide 80 security bits to the sizes of keys and algorithms that provide 112 or 128 security bits in order to protect against classic attacks. Post-quantum cryptography, which with its complexities still requires a more detailed study, challenge science once more. However, it is unknown when the changes will occur and when the quantum era will begin, as well as what consequences they will have. It is only possible to predict how many advantages will have quantum calculations compared to usual, and how different the new quantum models will be from classic ones.

Publisher

Odesa National University of Technology

Subject

General Medicine

Reference17 articles.

1. 1. P. Shor. (1997). Polynomial-Time Algorithms for Prime Factorization and Discrete

2. Logarithms on a Quantum Computer, SIAM J. Comput, 26 (5), 1484-1509.

3. 2. Pinto, J. (2022). Post-quantum cryptography challenges, 13.

4. 3. Mavroeidis, V., Vishi, K., Zych, M. D., Jøsang A. (2018). The Impact of Quantum Computing on Present Cryptography, 25.

5. 4. Christopher, P. (2019). Identifying research challenges in post quantum cryptography migration and cryptographic agility, 30.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3