1. [1.] Neskorodieva, A., Strutovskyi, M., Baiev, A., & Vietrov O. (2023). Real-time Classification, Localization and Tracking System (Based on Rhythmic Gymnastics). 2023 IEEE 13th International Conference on Electronics and Information Technologies (ELIT), 11-16. https://doi.org/10.1109/ELIT61488.2023.10310664
2. [2.] Neskorodieva, A. (2023). Neural network methods for automatic person pose estimation in rhythmic gymnastics exercises. Ukrainian Journal of Information Systems and Data Science, 1(1), 53-65. https://jujisds.donnu.edu.ua/article/view/14739
3. [3.] Neskorodieva, A.R. (2023). Computer program "Pose estimation for sports (Rhythmic gymnastics)", UANIPIO, Ukraine, #116622, bul. no. 75. https://sis.nipo.gov.ua/en/search/detail/1739332/.
4. [4.] Rizzoli, A. (2021). 7 Game-Changing AI Applications in the Sports Industry. https://www.v7labs.com/blog/ai-in-sports (date of access: 30.01.2024).
5. [5.] Brefeld, U., Davis, J., Lames, M., & Little, J.J. (2021). Machine Learning in Sports. Dagstuhl-Seminar, 11 (9), 21411. https://doi.org/10.4230/DagRep.11.9.45