Abstract
We describe the structure of diffeological bundle of non formal classical pseudo-differential operators over formal ones, and its structure group. For this, we give results on diffeological principal bundles with (a priori) no local trivialization including an Ambrose-Singer theorem, use the smoothing connections alrealy exhibited by the author in previous works, and finish with open questions.
Publisher
Odesa National University of Technology
Subject
Applied Mathematics,Geometry and Topology,Analysis
Reference44 articles.
1. [1] Malcolm Adams, Tudor Ratiu, and Rudolf Schmid. A Lie group structure for pseudodifferential operators. Math. Ann., 273:529-551, 1986. doi:10.1007/BF01472130.
2. [2] Nicole Berline, Ezra Getzler, and Michèle Vergne. Heat kernels and Dirac operators. Berlin: Springer, paperback ed. edition, 2004.
3. [3] Juliane Bokobza-Haggiag. Opérateurs différentiels sur une variété différentiable. Ann. Inst. Fourier, 19(1):125-177, 1969. doi:10.5802/aif.311.
4. [4] A. Cardona, C. Ducourtioux, J. P. Magnot, and S. Paycha. Weighted traces on algebras of pseudo-differential operators and geometry on loop groups. Infin. Dimens. Anal.
5. Quantum Probab. Relat. Top., 5(4):503-540, 2002. doi:10.1142/S021902570200095X.