On diffeological principal bundles of non-formal pseudo-differential operators over formal ones

Author:

Magnot Jean-Pierre

Abstract

We describe the structure of diffeological bundle of non formal classical pseudo-differential operators over formal ones, and its structure group. For this, we give results on diffeological principal bundles with (a priori) no local trivialization including an Ambrose-Singer theorem, use the smoothing connections alrealy exhibited by the author in previous works, and finish with open questions.

Publisher

Odesa National University of Technology

Subject

Applied Mathematics,Geometry and Topology,Analysis

Reference44 articles.

1. [1] Malcolm Adams, Tudor Ratiu, and Rudolf Schmid. A Lie group structure for pseudodifferential operators. Math. Ann., 273:529-551, 1986. doi:10.1007/BF01472130.

2. [2] Nicole Berline, Ezra Getzler, and Michèle Vergne. Heat kernels and Dirac operators. Berlin: Springer, paperback ed. edition, 2004.

3. [3] Juliane Bokobza-Haggiag. Opérateurs différentiels sur une variété différentiable. Ann. Inst. Fourier, 19(1):125-177, 1969. doi:10.5802/aif.311.

4. [4] A. Cardona, C. Ducourtioux, J. P. Magnot, and S. Paycha. Weighted traces on algebras of pseudo-differential operators and geometry on loop groups. Infin. Dimens. Anal.

5. Quantum Probab. Relat. Top., 5(4):503-540, 2002. doi:10.1142/S021902570200095X.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3